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A challenge for coevolutionary theory is how different types of interaction

influence the diversification of coevolving clades. Reciprocal specialization

is characteristic of certain coevolving, mutualistic interactions, but whether

this specialization seen in ecological time constrains changes in patterns of

interaction over evolutionary time remains unclear. Here, we examine the

co-radiation of Glochidion trees (Phyllanthaceae: Phyllanthus s. l.) and pollinat-

ing, seed-predatory Epicephala moths (Lepidoptera: Gracillariidae) on young

(mostly later than 5 Ma) oceanic islands in southeastern Polynesia. Epicephala
are the sole known pollinators of Glochidion trees, and show extreme reciprocal

specialization in continental Asia. We find that Glochidion and Epicephala
diversified across these islands through repeated, non-congruent coloniza-

tions, and that one recently colonizing Epicephala lineage has spread across

12 host species in three archipelagos in less than 1 Myr. These results indicate

that reciprocal specialization and coadaptation do not prevent dramatic

changes in associations between intimately associated taxa over short evol-

utionary time scales. Not only are these host associations more dynamic

than previously recognized, but these changes in patterns of interaction

may play an important role in the diversification of coevolving taxa.
1. Introduction
Coevolution, or reciprocal evolutionary change driven by selection between

multiple taxa, is widely invoked as a force promoting the diversification of

life on Earth [1–5]. Over the past two decades, the geographical mosaic

theory of coevolution [4,6] has led to great advances in understanding the

importance and mechanisms of coevolutionary diversification among popu-

lations [4,7–9]. However, studies conflict on coevolution’s importance in

diversification at higher taxonomic levels [5,10–15], and suggest a range of

mechanisms [1,3,12,15–18]. Although the mechanisms and role of coevolution

in promoting diversification among antagonists and competitors are relatively

clear [1,3,4,10,11], evidence is mixed as to the role of coevolution in the diver-

sification of mutualistic lineages [5,19–21]. Few studies have examined by what

mechanisms coevolving mutualistic clades diversify and concurrently assemble

themselves into patterns of interaction (but see [15,21]).

Some major study systems in the field of coevolution and diversification

have been obligate pollinating seed–predation mutualisms (or brood pollina-

tion mutualisms) between insects and angiosperms, such as the fig/fig wasp

[22], yucca/yucca moth [23], leafflower/leafflower moth (Phyllantheae/

Epicephala) [24] and senita cactus/senita moth [25] mutualisms. Focus on

these associations is primarily because the pollinators partially control gene

flow in their hosts [6], reciprocal coadaptations indicate that coevolutionary

selection occurs [22–24] and high species diversity is often evident [22–24].

In these mutualisms, specialized insects pollinate flowers of their hosts, but
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oviposit in the inflorescences such that their larvae consume a

subset of the hosts’ seeds. Importantly, these interactions

show high reciprocal specialization, in which each plant

species interacts with one or a few insect species locally,

and vice versa [22–24].

Despite great interest in pollinating seed–predation mutu-

alisms, little is known about the mechanisms by which they

speciate and diversify, with the exception of yuccas and

yucca moths [12,13,15,17]. It is known that large-scale phylo-

genies of plants and their pollinators are topologically more

congruent than would be expected by chance [15,24,26]

(with exact congruence limited to some cases of species pairs

[17]), and that extreme reciprocal specialization exists between

host and pollinator at fine taxonomic scales. The common

interpretation is that cospeciation or tracking of hosts by polli-

nators is predominant, but that, to some degree, host-shifts

must occur in the diversification of pollinators. However,

diversification of these systems at fine scales has hardly been

examined, in part owing to the high diversity of some

groups (e.g. figs, leafflowers; but see [15]). It is not known

whether the factors that promote high reciprocal specialization

in these mutualisms (which may include coevolutionary selec-

tion [27], ancestral specialization [6] or pollinator–pollinator

competition [28]) additionally constrain diversification and

changes in the patterns of interaction over evolutionary time

scales. These factors might constrain taxa to cospeciate (or phy-

logenetically track one another) over short evolutionary time

scales, with host-shifts being rare events. Alternatively, these

factors might not prevent patterns of interaction among taxa

from changing and reforming dynamically over short evol-

utionary time scales, in a manner similar to that seen in

other interactions that are considered less specialized [4].

Both of the above processes would produce similar cophyloge-

netic and specialization patterns at large scales, but have very

different implications for how diversification occurs in these

coevolving mutualisms. To distinguish between these hypoth-

eses, a system is needed that can serve as a proxy for the early
stages of diversification, and whose history of co-association

can be reconstructed in fine detail to determine whether

changes in the patterns of interaction are constrained over

short evolutionary time scales, or are more dynamic.

Such a system exists in the co-radiation of leafflower trees

(Phyllanthaceae: Phyllantheae: Phyllanthus s. l. [Glochidion])

and leafflower moths (Lepidoptera: Gracillariidae: Epicephala)

[24,29] on oceanic islands in southeastern Polynesia. The

genus Glochidion sensu lato (hereafter, Glochidion) is the best-

studied clade of leafflowers [26,29–31], with approximately

300 species described from tropical Asia, Australasia and the

Pacific islands [32]. Epicephala includes the sole known pollina-

tors of Glochidion; female Epicephala actively pollinate Glochidion
flowers and then oviposit into the floral ovaries, where the

larvae consume a subset of the developing seeds [29]. Species

specificity is very high and mediated by floral odour [30,31].

The biological intimacy of the mutualism [24], co-adapted

traits of the associates [24,31], mutual dependency of the two

clades for their life cycles [24,29,33] and convergent evolution

of Glochidion floral morphology with that of other Epicephala-

pollinated leafflowers [34] all indicate that Glochidion and

Epicephala have coevolved, but do not indicate how they

diversified or how their patterns of interaction have changed

over time. Previous analyses have found that phylogenies of

Glochidion and its clade of Epicephala on continents and west

Pacific islands are significantly but not exactly congruent

[26], and in one case two distantly related Epicephala species

coexist sympatrically on one Glochidion host species [30].

We examine the co-radiation of 24 described species of

Glochidion and their Epicephala pollinators in southeastern

Polynesia (Cook Islands, French Polynesia and Pitcairn Islands;

electronic supplementary material, figure S1) [33,35–37], which

is likely to represent a recent, in situ radiation resulting from a

limited number of colonization events. The high islands of

southeastern Polynesia comprise a series of archipelagos (the

southern Cook, Society, Austral, Tuamotu, Marquesas, Gambier

and Pitcairn islands; figure 1), all of which were formed by
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midplate volcanoes under the Pacific plate [38]. With the excep-

tion of the Miocene-age northern Austral and Gambier islands,

these islands were either formed or subaerially uplifted during

the Pliocene and Pleistocene (since 5 Ma [39]). Glochidion species

in this region are endemic to single archipelagos (with two

exceptions [40]), show great diversity in floral morphology

[36] and are one of the largest endemic plant radiations [41].

These factors suggest that diversification of Glochidion and

Epicephala in southeastern Polynesia has occurred over very

recent evolutionary time scales.

Glochidion and Epicephala in southeastern Polynesia represent

a specialized insect–plant mutualism that has co-radiated across

oceanic islands. This system provides an opportunity to examine

the patterns of diversification between coevolving clades in fine

detail and ask whether over short evolutionary time scales

these plants and insects have been constrained to co-diversify

in a cophylogenetic pattern (with host-shifts being rare), or if pat-

terns of interaction have changed dynamically over time as the

clades co-diversified. Our hypothesis, based on past findings of

cospeciation and reciprocal specialization [26,30,31], is that

Glochidion and Epicephala have each colonized this region once,

and diversified in situ in a manner producing phylogenetic con-

gruence, without changes in the patterns of interaction.

Alternatively, Glochidion and Epicephala may have colonized

this region multiple times and non-congruently, and in their

diversification they may have undergone changes in the patterns

of interaction via host-shifts or other mechanisms. To test these

rival hypotheses, we specifically ask (i) how many times Glochi-
dion and Epicephala have each colonized southeastern Polynesia,

(ii) whether they show phylogenetic congruence in this region,

and (iii) whether detailed taxon sampling shows evidence for

cospeciation, sorting (duplication followed by differential

extinction) or host-shifts in their codiversification.
2. Material and methods
(a) Sampling
We collected specimens of 22 (of 24) species of Glochidion from

21 islands in the Cook Islands and French Polynesia for a total of

35 operational taxonomic units (one sample per species per island),

plus 60 additional Glochidion taxa from American Samoa, Wallis,

Fiji, New Caledonia, Australia and Asia (see the electronic sup-

plementary material, table S1). From the same Glochidion trees in

southeastern Polynesia, we collected 32 Epicephala specimens (one

per host species per island) plus an additional 46 Epicephala speci-

mens from Glochidion in American Samoa, Fiji, New Caledonia,

Australia and Asia (see the electronic supplementary material,

table S1). Both datasets included data from previous studies

[26,30]. See electronic supplementary material for additional detail.

(b) Molecular phylogenetic methods
We Sanger-sequenced 1500 bp of nuclear ribosomal DNA (ITS,

ETS) and 700 bp of chloroplast (matK–trnK) DNA for Glochidion,

and 500 bp of mitochondrial (COI) and 1500 bp of nuclear

(ArgK, EF1-a) DNA for Epicephala, using primers and methods

from previous studies [26,34,42–44] (see electronic supplementary

material). GenBank accession numbers are KC912861–KC913192.

(c) Phylogenetic analysis
Sequence data were edited in SEQUENCHER (Gene Codes Corporation,

Ann Arbor, MI) and aligned using MUSCLE [45]. We conducted

phylogenetic analyses of both datasets using likelihood
implemented in RAxML-HPC2 [46,47] on CIPRES [48] and Baye-

sian inference implemented in MRBAYES v. 3.1 [49]. The outgroup

was Breynia distica (Phyllanthaceae) for the Glochidion analyses,

and the undescribed Epicephala species from Phyllanthus amarus
for the Epicephala analyses, following earlier findings [34]. See

electronic supplementary material for additional detail.

(d) Divergence time estimation
We estimated ages of southeastern Polynesian clades of both taxa

in BEAST v. 1.7 [50], using a lognormal relaxed clock [51] on

CIPRES [48]. Available time-calibration points were limited. For

Glochidion, we used two Glochidion fossils from the Miocene of

India [52,53] and the age of Rapa (4.8 Ma) [39]. For Epicephala,

we used a secondary calibration from previous divergence time

estimates [34] and the age of the Marquesas Archipelago

[38,39]. The Epicephala dataset was pruned for species-level

sampling. See electronic supplementary material for additional

information.

(e) Biogeography
We used Bayes factor comparisons in MRBAYES v. 3.2 [49] as well as

Shimodaira–Hasegawa tests [54] in the package phangorn [55]

implemented in R [56] to statistically test for the observed poly-

phyly of southeastern Polynesian Glochidion and Epicephala,

respectively. Both analyses used the results of Bayesian inferences

in which southeastern Polynesian taxa were constrained to be

monophyletic and to not be monophyletic (see the electronic

supplementary material). Additionally, we conducted ancestral

state reconstructions of biogeography on a posterior distribution

of trees from the unconstrained Bayesian analyses using BAYESTRAITS

[57] (see electronic supplementary material).

( f ) Cophylogenetic analysis
We used the method ParaFit [58] implemented in the package ape

[59] in R [56] to test the hypothesis that Glochidion and Epicephala
have codiversified in a manner producing phylogenetic congru-

ence both globally and within southeastern Polynesia. Analyses

were conducted using both posterior distributions of trees from

the Bayesian phylogenetic analysis and Bayesian consensus trees

(see the electronic supplementary material).

(g) Glochidion taxonomy
Glochidion has been estimated to be monophyletic within a para-

phyletic Phyllanthus sensu lato [34]; accordingly, many Glochidion
species have recently been treated in Phyllanthus [40], and we use

these names where they exist (see the electronic supplementary

material, appendix).

(h) Epicephala taxonomy
Taxonomy of Epicephala species is primarily based on the mor-

phology of male genitalia [60]. We dissected genitalia of the

male southeastern Polynesian Epicephala (all of which were ende-

mic [33] and, with one exception [61], undescribed) to determine

whether morphology was consistent with the patterns revealed

by molecular phylogenetic analysis.
3. Results
(a) Phylogeny of Glochidion
Bayesian phylogenetic analyses resolved that southeastern Poly-

nesian members of Glochidion fall into two clades (figure 2),

both of which are deeply nested within an Asian–Australasian

grade of taxa. Maximum-likelihood analyses do not conflict
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with the Bayesian inference tree but show less supported

resolution within Glochidion (see the electronic supplemen-

tary material, figure S4); all further analyses use the

Bayesian consensus tree. All taxa sampled from the Cook,

Society, Austral, Marquesas and Tuamotu archipelagos fall

into a single clade (clade A), along with one taxon from

Samoa (Phyllanthus cuspidatus). Resolution within clade A is

poor, although a clade was found uniting the three taxa

from Rapa. The remaining southeastern Polynesian species,

Phyllanthus wilderi from Mangareva (Gambiers), is more

closely related to taxa from Samoa, Wallis and Fiji (clade

B). This grouping is biogeographically unusual because
Samoa and Mangareva are nearly 4000 km apart, but is

supported by two specimens of P. wilderi from different

sites on Mangareva.
(b) Phylogeny of Epicephala
Both Bayesian and maximum-likelihood analyses resolved that

Epicephala from southeastern Polynesia fall into two clades

(figure 3; electronic supplementary material, figure S5). The

first, clade Y, is distributed across multiple archipelagos

(Cook, Society, Rapa, Tuamotu and Marquesas) and has diver-

sified into a number of subclades, each of which appears
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geographically restricted to a single island or archipelago. The

second, clade Z, is distributed across the Cook, Society and

northern Austral archipelagos. Clade Y appears to contain Epi-
cephala from Samoa and Fiji, but this pattern of being nested

within clade Y (as opposed to being sister to the southeastern

Polynesian taxa) is seen only in the COI and the combined

analyses, and not in the individual nuclear-gene datasets

(see the electronic supplementary material, figures S6–S8).
(c) Molecular dating
The mean age of clade A was estimated at 9.5–9.8 Ma (5.5–

13.3 Ma) and that of clade B at 3.8–4.0 Ma (1.6–6.8 Ma).
Hardly any of the presently subaerial high islands in south-

eastern Polynesia existed by 9.5 Ma, and very few by 5.5 Ma.

Those present by 9.5 Ma would have been Tubuai (and

possibly Rurutu; Australs), and potentially Moruroa and

Fangataufa (Tuamotus; Hereheretue–Mangareva–Pitcairn

alignment), which are now atolls [39]. By contrast, the age of Epi-
cephala clade Y was estimated to be 3.1 Ma (1.7–4.5 Ma), and that

of clade Z to be 0.41 Ma (0.08–0.81 Ma). Although these age esti-

mates are not without error, the ten-fold difference in mean

estimates for the roots of clades Y and Z does suggest that

clade Z colonized southeastern Polynesia more recently than

clade Y. All distributions of divergence time estimates for south-

eastern Polynesian Epicephala are younger than the majority of
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extant high island chains (Society, Marquesas, Austral and

Gambier [39]) and the Glochidion clade A estimates. Because

Bayesian divergence time estimation is very sensitive to root

calibrations and the amount of sequence variation across Asia-

Pacific Glochidion in this dataset is very low, better calibration

points and larger datasets are required for rigorous inference of

the absolute timing of their history of association. See electronic

supplementary material for additional detail.

(d) Phylogenetic congruence
Southeastern Polynesian Glochidion and Epicephala lack phy-

logenetic congruence. Southeastern Polynesian members of

Glochidion (excluding those from Mangareva) fall into a single

clade, whereas the Epicephala associated with them fall into two

distantly related clades (figure 4). This polyphyly of southeastern

Polynesian Epicephala is statistically supported both by the

number of significantly supported nodes separating the two

Epicephala clades in the Bayesian phylogenetic analysis, as well

as by Bayes factor and Shimodaira–Hasegawa tests (below).

ParaFit cospeciation analyses using trees randomly sampled

from Bayesian posterior distributions support phylogenetic

congruence for Glochidion and their Epicephala globally

(throughout the Asia-Pacific region; p-values centred on p¼
0.017, Shapiro–Wilk normality test, W¼ 0.8656, pW , 0.001)

and excluding southeastern Polynesian taxa (Asia, Australia

and the west Pacific; centred on p¼ 0.018, W ¼ 0.8504, pW ,

0.001), but not within southeastern Polynesia (centred on p¼
0.700, W¼ 0.9573, pW , 0.001). These results are robust to the

collapse of minimally monophyletic southeastern Polynesian

Epicephala subclades into single terminals (global analysis:

centred on p ¼ 0.013, W¼ 0.8769, pW , 0.001; southeastern

Polynesia: centred on p ¼ 0.58, W¼ 0.9677, pW , 0.001). Para-

Fit analyses using Bayesian consensus trees obtain consistent

results (see the electronic supplementary material).

(e) Statistical tests of biogeographic patterns
Both Bayes factor comparisons (see the electronic supplemen-

tary material, tables S2 and S3) and Shimodaira–Hasegawa

tests (Glochidion: p ¼ 0.029; Epicephala: p , 0.0001) support the

polyphyly of southeastern Polynesian Glochidion and south-

eastern Polynesian Epicephala observed in the unconstrained

Bayesian consensus trees. Biogeographic reconstructions in
BAYESTRAITS suggest that the most recent common ancestor

(MRCA) of Glochidion clade A was found in southeastern Poly-

nesia, whereas the MRCA of clade B, and the common ancestor

of clades A and B were found elsewhere (figure 2; electronic

supplementary material, table S4), supporting the hypothesis

that Glochidion colonized this region twice. The MRCA of Epi-
cephala clade Z is strongly supported as present in southeastern

Polynesia, whereas the MRCA of Epicephala clade Y (which

contains southeastern Polynesian, Samoan and Fijian taxa) is

reconstructed equivocally (figure 3; electronic supplementary

material, table S5). The MRCA of clades Y and Z, as well as

the MRCAs of clades Y and Z with each of their respective

sister groups from the Bayesian consensus tree (clade Y with

the Epicephala from Glochidion benthamianum and Glochidion
pindai; clade Z with the Epicephala from Glochidion harveyanum)

are strongly supported as found outside southeastern Polyne-

sia. Taken together, these results suggest that Epicephala
colonized southeastern Polynesia at least twice.
( f ) Genital morphology and Epicephala taxonomy
The groupings of Epicephala obtained via molecular phylogenetic

analysis are supported by male genital morphology. In particu-

lar, clade Z is a single morphospecies within the Society and

northern Austral archipelagos. Each geographically restricted

subclade within clade Y is morphologically distinct.
4. Discussion
(a) Multiple colonizations of southeastern Polynesia
This study finds that Glochidion and Epicephala have each colo-

nized southeastern Polynesia multiple times independently

(figures 2 and 3). Glochidion trees in most of the region

(Cook, Austral, Society, Tuamotu and Marquesas archipela-

gos) appear to result from a single colonization, whereas

Glochidion from the Gambier Archipelago (Mangareva)

appears to result from a separate colonization. Likewise, Epice-
phala moths in southeastern Polynesia fall into two clades, one

of which is distributed throughout the entire region (Cook,

Austral, Society, Tuamotu and Marquesas archipelagos) and

another of which is distributed across the western part of

this region (Cook, Austral and Society archipelagos). Glochidion
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and Epicephala are thus additional examples of organisms that

have repeatedly colonized southeastern Polynesia [62–65]. We

find that four islands in the Society archipelago (Raiatea, Hua-

hine, Moorea and Tahiti) have been colonized twice each by

Epicephala; few repeated colonizations of the same island are

known in the southeastern Polynesian biota (but see [64]).

Independent colonizations of the same island by distantly

related Epicephala lineages are also seen in this study on Tutuila

(American Samoa) and Viti Levu (Fiji), suggesting that this

may be a general pattern in the diversification of Epicephala
in the Pacific. The grouping of Phyllanthus cuspidatus from

Samoa with the southeastern Polynesian Glochidion and the

nesting of several Fiji and Samoa Epicephala within clade Y

may represent ‘back-colonizations’ of the west Pacific from

southeastern Polynesia.

Phyllanthus wilderi from the Gambier archipelago (Mangar-

eva) appears more closely related to several taxa from Samoa,

Wallis and Fiji, at least 4000 km distant, than to the remainder

of southeastern Polynesian Glochidion. Although this is an unu-

sual biogeographic association, the Gambiers are old (at least

5.7 Ma [66]) and distant from the nearest high islands to the

west (1000 km from Rapa, 1500 km from the Marquesas); analo-

gous long-distance sister relationships are known in Pacific

plants [67]; and most of the diversity of western Polynesian

Glochidion is missing from this analysis. Like the rest of the

Mangarevan flora, P. wilderi is extremely rare due to human

impacts [68], and Epicephala were not collected from this species;

however, photographs of mature P. wilderi fruit with exit holes

and only a fraction of the seed set consumed suggest these

moths persist on trees on the cliffs of Mangareva (J.-F. Butaud

2012, personal communication). Biogeographic affinities of the

Gambiers biota are poorly known (but see [63]).

Three further inferences can be made about the bio-

geographic history of Glochidion and Epicephala within

southeastern Polynesia. Although Glochidion clade A is a poly-

tomy, a common pattern in island plant radiations [69], the

three Glochidion species from the old, isolated island of Rapa

form a clade with strong support (1.0; figure 2). Epicephala
clade Y has differentiated into a set of morphologically and phy-

logenetically distinguishable subclades, each of which appears

geographically restricted to one island or a group of adjacent

islands. By contrast, clade Z shows no statistically supported sub-

structure across three archipelagos. The presence of geographical

structure in Epicephala clade Y is consistent with a role for geo-

graphical isolation in the diversification of this clade, similar to

findings from similar mutualisms [15,17,70].

These biogeographic patterns are unlikely to result from

human-mediated dispersal. Evidence is lacking of the use,

cultivation or transport of Glochidion in the southeastern Polyne-

sian linguistic and ethnobotanical literature [71–77], and the

patterns of distribution and endemism of Glochidion and Epice-
phala taxa are inconsistent with human patterns of migration

into and within southeastern Polynesia (see the electronic

supplementary material).
(b) Phylogenetic incongruence over short time scales
Reciprocal coadaptation, biogeographic isolation and competi-

tive exclusion between pollinator lineages might be expected

to constrain patterns of diversification between Glochidion and

Epicephala so that they cospeciate or phylogenetically track

over short evolutionary time scales. However, we find funda-

mental incongruence between the phylogenetic histories of
these plants and pollinators over a timespan of less than

5 Myr, indicating that despite these potential constraints, pat-

terns of interaction are dynamic and can shift rapidly over

several million years as these clades diversify. Not only did

clade Z shift onto a new host when it colonized southeastern

Polynesia, but it subsequently rapidly shifted onto at least 11

other host species on 12 other islands. Whatever factors pro-

mote reciprocal specialization in this mutualism in continental

regions [30] and geographic isolation on different islands do

not prevent rapid changes in the patterns of association

between Glochidion and Epicephala as they diversify on young

oceanic archipelagos. Such dramatic phylogenetic incongruence

at fine scales has not previously been demonstrated in

pollinating seed–predation mutualisms.

However, this and a previous study [26] find evidence of

phylogenetic congruence between Glochidion and Epicephala
both globally (despite the presence of southeastern Polynesian

taxa) and within the Asia and west Pacific region (excluding

southeastern Polynesia). Thus, it is possible that at a fine scale,

closely related species of Glochidion and their Epicephala pollina-

tors diversify in a manner that results in phylogenetic

incongruence, but that still produces some detectable congruence

at larger phylogenetic scales. Similar patterns are apparent in fig

wasps [16,22,27,78] and yucca moths [16]. These results under-

score that we should not necessarily expect coevolving clades

undergoing diversification to show phylogenetic congruence,

even in highly specialized mutualisms [4,79] (but see [80]).

(c) Evidence for rapid and widespread host-shifts in
diversification

This study finds that rapid and widespread host-shifts may

be an important factor in the diversification of Glochidion and

Epicephala over short evolutionary time scales. Phylogenetic

incongruence between mutualists can be explained by several

processes: limitations of phylogenetic inference, duplication fol-

lowed by differential extinction (lineage sorting), host-shifts and

failure-to-diverge events [81]. Distinguishing among these pro-

cesses has proved difficult. By examining recently diversified

clades with extensive sampling, this study finds evidence for

host-shifts (and probably also failure-to-diverge events) in the

diversification of Epicephala and Glochidion. These results also

indicate, more importantly, that a pollinator lineage (Epicephala
clade Z) can shift onto many species of hosts (12 Glochidion
species) over a wide geographical area (13 islands in three archi-

pelagos) in a short period of time (approx. less than 1 Ma).

Clade Z is unlikely to be a non-pollinating ‘cheater’ taxon

because clade Z has been observed pollinating [33] (D.H.H.

2011–2012, unpublished data) and because females possess

pollen-carrying proboscis hairs, unlike other Epicephala lineages

which have lost pollination behaviour [34]. Host-shifts have

previously been postulated as a mechanism explaining phylo-

genetic incongruence between Glochidion and Epicephala
[26,30]. It is likely that similar rapid host-shifts occur in this

mutualism on continents as well, but are harder to detect

than in this case because of the difficulty of comprehensively

sampling from a wide geographical area.

The evolutionary consequences of host-shifts in specialized

pollination mutualisms are not clear [28]. Multiple pollinator

species may stably coexist on one host. Alternatively, compe-

tition between two pollinators may result in displacement of

one species, or divergence in the plant may be accompanied

by coevolution with different pollinators. Local coexistence
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of two distantly related Epicephala species on a single leaf-

flower species has been reported in Asia [30,82]. Because

host-shifts may potentially be a mechanism of diversification

mediated by coevolution, data on their frequency, ecology

and selective consequences in this and similar systems may

reveal much about how coevolving clades diversify.

(d) Comparison of leafflowers with yuccas and figs
These results provide illuminating comparisons with what is

known of how diversification occurs in the yucca/yucca

moth and fig/fig wasp mutualisms. Nearly complete extant

taxon sampling of yuccas and yucca moths suggests the moth

clade Tegeticula has largely tracked the phylogeny of its Yucca
hosts millions of years after Yucca had already diversified,

although host-shifts and failure-to-diverge events have been

common [15]. As seen in Epicephala clade Y, speciation in

both Yucca and Tegeticula has largely been allopatric. Intrigu-

ingly, it is suggested [15] that Tegeticula may have rapidly

shifted onto many previously existing Yucca species, and in

doing so displaced an earlier pollinator lineage (potentially

the extant genus Parategeticula) that had previously been associ-

ated with the entire Yucca radiation. A similar widespread,

rapid host-shift occurred when Epicephala clade Z colonized

southeastern Polynesia, and this colonization may have

involved partial displacement of one pollinator lineage by

another. Few studies have examined recent diversification of

figs and fig wasps (but see [83,84]), but many find multiple pol-

linator species per fig species [22], which may be consistent

with rapid host-shifts such as those observed here in Glochidion
and Epicephala [28]. Consequently, yucca/yucca moth and

fig/fig wasp evolutionary patterns appear broadly consistent

with those seen here in Glochidion and Epicephala, suggesting

that despite trends towards reciprocal specialization and
coadaptation, patterns of interaction may be highly dynamic

over short evolutionary time scales in these mutualisms as

well. However, neither figs nor yuccas show evidence of host-

shifts as widespread and as rapid as those reported here.

Cophylogenetic patterns involving the four other reciprocally

associated clades of Epicephala moths and their host leafflowers

(in Phyllanthus and Breynia) [34] would be informative in

comparison with this study.
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